ferritin_core/
atomcollection.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
//! AtomCollection
//!
//! An AtomCollection is primarily a group of atoms with some atomic properties like coordinates, element type
//! and residue information. Additional data like bonds can be added post-instantiation.
//! The data for residues within this collection can be iterated through. Other useful queries like inter-atomic
//! distances are supported.
use super::bonds::{Bond, BondOrder};
use super::info::constants::get_bonds_canonical20;
use crate::residue::{ResidueAtoms, ResidueIter};
use crate::selection::{AtomSelector, AtomView, Selection};
use itertools::{izip, Itertools};
use pdbtbx::Element;

/// Atom Collection
///
/// The core data structure of ferritin-core.
///
/// it strives to be simple, high performance, and extensible using
/// traits.
///
pub struct AtomCollection {
    size: usize,
    coords: Vec<[f32; 3]>,
    res_ids: Vec<i32>,
    res_names: Vec<String>,
    is_hetero: Vec<bool>,
    elements: Vec<Element>,
    atom_names: Vec<String>,
    chain_ids: Vec<String>,
    bonds: Option<Vec<Bond>>,
    // atom_type: Vec<String>,
    // // ... other fixed fields
    // dynamic_fields: HashMap<String, Vec<Box<dyn Any>>>,
    // //         self.add_annotation("chain_id", dtype="U4")
    // self.add_annotation("res_id", dtype=int)
    // self.add_annotation("ins_code", dtype="U1")  <- what is this?
    // self.add_annotation("res_name", dtype="U5")
    // self.add_annotation("hetero", dtype=bool)
    // self.add_annotation("atom_name", dtype="U6")
    // self.add_annotation("element", dtype="U2")
}

impl AtomCollection {
    pub fn new(
        size: usize,
        coords: Vec<[f32; 3]>,
        res_ids: Vec<i32>,
        res_names: Vec<String>,
        is_hetero: Vec<bool>,
        elements: Vec<Element>,
        atom_names: Vec<String>,
        chain_ids: Vec<String>,
        bonds: Option<Vec<Bond>>,
    ) -> Self {
        AtomCollection {
            size,
            coords,
            res_ids,
            res_names,
            is_hetero,
            elements,
            atom_names,
            chain_ids,
            bonds,
        }
    }
    pub fn calculate_displacement(&self) {
        // Measure the displacement vector, i.e. the vector difference, from
        // one array of atom coordinates to another array of coordinates.
        unimplemented!()
    }
    pub fn calculate_distance(&self, _atoms: AtomCollection) {
        // def distance(atoms1, atoms2, box=None):
        // """
        // Measure the euclidian distance between atoms.

        // Parameters
        // ----------
        // atoms1, atoms2 : ndarray or Atom or AtomArray or AtomArrayStack
        //     The atoms to measure the distances between.
        //     The dimensions may vary.
        //     Alternatively, a ndarray containing the coordinates can be
        //     provided.
        //     Usual *NumPy* broadcasting rules apply.
        // box : ndarray, shape=(3,3) or shape=(m,3,3), optional
        //     If this parameter is set, periodic boundary conditions are
        //     taken into account (minimum-image convention), based on
        //     the box vectors given with this parameter.
        //     The shape *(m,3,3)* is only allowed, when the input coordinates
        //     comprise multiple models.

        // Returns
        // -------
        // dist : float or ndarray
        //     The atom distances.
        //     The shape is equal to the shape of the input `atoms` with the
        //     highest dimensionality minus the last axis.

        // See also
        // --------
        // index_distance
        // """
        // diff = displacement(atoms1, atoms2, box)
        // return np.sqrt(vector_dot(diff, diff))
        unimplemented!()
    }
    pub fn connect_via_residue_names(&mut self) {
        if self.bonds.is_some() {
            println!("Bonds already in place. Not overwriting.");
            return;
        }
        let aa_bond_info = get_bonds_canonical20();
        let residue_starts = self.get_residue_starts();
        // Iterate through residues
        let mut bonds = Vec::new();
        for res_i in 0..residue_starts.len() - 1 {
            let curr_start_i = residue_starts[res_i] as usize;
            let next_start_i = residue_starts[res_i + 1] as usize;
            if let Some(bond_dict_for_res) =
                aa_bond_info.get(&self.res_names[curr_start_i].as_str())
            {
                // Iterate through bonds in this residue
                for &(atom_name1, atom_name2, bond_type) in bond_dict_for_res {
                    let atom_indices1: Vec<usize> = (curr_start_i..next_start_i)
                        .filter(|&i| self.atom_names[i] == atom_name1)
                        .collect();
                    let atom_indices2: Vec<usize> = (curr_start_i..next_start_i)
                        .filter(|&i| self.atom_names[i] == atom_name2)
                        .collect();

                    // Create all possible bond combinations
                    for &i in &atom_indices1 {
                        for &j in &atom_indices2 {
                            bonds.push(Bond::new(
                                i as i32,
                                j as i32,
                                BondOrder::match_bond(bond_type),
                            ));
                        }
                    }
                }
            }
        }
        self.bonds = Some(bonds);
    }
    pub fn connect_via_distance(&self) -> Vec<Bond> {
        // note: was intending to follow Biotite's algo
        unimplemented!()
    }
    pub fn get_size(&self) -> usize {
        self.size
    }
    pub fn get_atom_name(&self, idx: usize) -> &String {
        &self.atom_names[idx]
    }
    pub fn get_bonds(&self) -> Option<&Vec<Bond>> {
        self.bonds.as_ref()
    }
    pub fn get_chain_id(&self, idx: usize) -> &String {
        &self.chain_ids[idx]
    }
    pub fn get_coord(&self, idx: usize) -> &[f32; 3] {
        &self.coords[idx]
    }
    pub fn get_coords(&self) -> &Vec<[f32; 3]> {
        self.coords.as_ref()
    }
    pub fn get_element(&self, idx: usize) -> &Element {
        &self.elements[idx]
    }
    pub fn get_elements(&self) -> &Vec<Element> {
        self.elements.as_ref()
    }
    pub fn get_is_hetero(&self, idx: usize) -> bool {
        self.is_hetero[idx]
    }
    pub fn get_resnames(&self) -> &Vec<String> {
        self.res_names.as_ref()
    }
    pub fn get_res_id(&self, idx: usize) -> &i32 {
        &self.res_ids[idx]
    }
    pub fn get_resids(&self) -> &Vec<i32> {
        self.res_ids.as_ref()
    }
    pub fn get_res_name(&self, idx: usize) -> &String {
        &self.res_names[idx]
    }
    /// A new residue starts, either when the chain ID, residue ID,
    /// insertion code or residue name changes from one to the next atom.
    pub(crate) fn get_residue_starts(&self) -> Vec<i64> {
        let mut starts = vec![0];

        starts.extend(
            izip!(&self.res_ids, &self.res_names, &self.chain_ids)
                .tuple_windows()
                .enumerate()
                .filter_map(
                    |(i, ((res_id1, name1, chain1), (res_id2, name2, chain2)))| {
                        if res_id1 != res_id2 || name1 != name2 || chain1 != chain2 {
                            Some((i + 1) as i64)
                        } else {
                            None
                        }
                    },
                ),
        );
        starts
    }
    pub fn iter_coords_and_elements(&self) -> impl Iterator<Item = (&[f32; 3], &Element)> {
        izip!(&self.coords, &self.elements)
    }
    /// Iter_Residues Will Iterate Through the AtomCollection one Residue at a time.
    ///
    /// This is the base for any other residue filtration code.
    pub fn iter_residues_all(&self) -> ResidueIter {
        ResidueIter::new(self, self.get_residue_starts())
    }
    pub fn iter_residues_aminoacid(&self) -> impl Iterator<Item = ResidueAtoms> {
        self.iter_residues_all()
            .filter(|residue| residue.is_amino_acid())
    }
    pub fn select(&self) -> AtomSelector {
        AtomSelector::new(self)
    }
    pub fn select_by_chain(&self, chain_id: &str) -> Selection {
        let indices: Vec<usize> = self
            .chain_ids
            .iter()
            .enumerate()
            .filter(|(_, &ref chain)| chain == chain_id)
            .map(|(i, _)| i)
            .collect();
        Selection::new(indices)
    }
    pub fn select_by_residue(&self, res_name: &str) -> Selection {
        let indices: Vec<usize> = self
            .res_names
            .iter()
            .enumerate()
            .filter(|(_, name)| name.as_str() == res_name)
            .map(|(i, _)| i)
            .collect();
        Selection::new(indices)
    }
    pub fn view(&self, selection: Selection) -> AtomView {
        AtomView::new(self, selection)
    }
}

#[cfg(test)]
mod tests {
    use crate::AtomCollection;
    use ferritin_test_data::TestFile;
    use pdbtbx::Element;

    #[test]
    fn test_selection_api() {
        let (prot_file, _temp) = TestFile::protein_01().create_temp().unwrap();
        let (pdb, _) = pdbtbx::open(prot_file).unwrap();
        let ac = AtomCollection::from(&pdb);

        let selected_atoms = ac
            .select()
            .chain("A")
            .residue("GLY")
            .element(Element::C)
            .collect();
        assert_eq!(selected_atoms.size(), 22);
    }

    #[test]
    fn test_residue_iterator() {
        let (prot_file, _temp) = TestFile::protein_01().create_temp().unwrap();
        let (pdb, _) = pdbtbx::open(prot_file).unwrap();
        let ac = AtomCollection::from(&pdb);
        assert_eq!(ac.get_size(), 1413);
        // This includes Water Molecules
        let max_resid = ac.get_resids().iter().max().unwrap_or(&0);
        assert_eq!(*max_resid, 338);
        // this fn is only available in-crate
        // let residue_breaks = ac.get_residue_starts();
        // assert_eq!(residue_breaks, vec![1, 2, 3]);
    }

    #[test]
    fn test_chain_iterator() {
        let (prot_file, _temp) = TestFile::protein_04().create_temp().unwrap();
        let (pdb, _) = pdbtbx::open(prot_file).unwrap();
        let ac = AtomCollection::from(&pdb);
        assert_eq!(ac.get_size(), 2154);
    }
}